Skip to content

Classification Metrics

Definitions

Single Label Classification measures the performance of a classification module.


Example Usage

Required data items: predicted_class, ground_truth_class

from continuous_eval.metrics.classification import SingleLabelClassification
datum = {
"predicted_class": "quantitative_question",
"ground_truth_class": "qualitative_question",
}
metric = SingleLabelClassification(classes={"qualitative_question", "quantitative_question"})
print(metric(**datum))

Example Output

{
'classification_prediction': 'quantitative_question', 'classification_ground_truth': 'qualitative_question', 'classification_correct': False
}

Aggregate Results

from continuous_eval.metrics.classification import SingleLabelClassification
y_pred = ["A", "A", "B", "A", "B"]
y_true = ["A", "B", "B", "A", "B"]
metric = SingleLabelClassification(classes={"A", "B"})
results = [metric(y, y_gt) for y, y_gt in zip(y_pred, y_true)]
print(metric.aggregate(results))

Example Output

{
"accuracy": 0.8,
"balanced_accuracy": 0.8333333333333333,
"precision": 0.8333333333333333,
"recall": 0.8333333333333333,
"f1": 0.8,
}